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Abstract: Phononic crystals and metamaterials have been widely investigated over the last decade. In recent years, by integration with
piezoelectric transducers, phononic/metamaterial-based piezoelectric energy harvesters (PEHs) have gained increasing research interest
for achieving multifunctionalities. This paper proposes a general framework for modelling phononic/metamaterial beams bonded with piezo-
electric transducers based on a one-dimensional piezoelectric composite finite element derived using the generalized Hamilton’s principle.
A method for calculating band structures of infinitely long models of phononic/metamaterial beams that can carry piezoelectric transducers is
then developed. This method is demonstrated via two case studies. The first case study investigates a metamaterial beam without piezoelectric
coverage, and the proposed method is verified by the transfer matrix method (TMM). Compared with the TMM, the proposed method
provides a dispersion relationship in a simpler form and thus demonstrates higher computational efficiency. The second case study inves-
tigates a metamaterial beam with periodic piezoelectric coverage. The proposed method takes into consideration the piezoelectric effect. Band
structures of such a piezoelectric metamaterial beam under short-circuit and open-circuit conditions are evaluated. Subsequently, correspond-
ing finitely long models of the two case studies are analyzed. The transmittances and open-circuit voltage responses of the piezoelectric
transducers are then calculated. The predicted band gaps from transmittances match well with those from band structures. In addition, the
transmittances and open-circuit voltage responses of piezoelectric transducers predicted based on the proposed model are verified against the
finite-element solution produced by the ANSYS FE program. DOI: 10.1061/(ASCE)AS.1943-5525.0000920. © 2018 American Society of
Civil Engineers.

Introduction

In recent decades, the propagation of elastic or acoustic waves in
materials with periodic structures, called phononic crystals (PCs),
has been extensively studied (Chen et al. 2011; Lu et al. 2009; Page
et al. 2004). One important characteristic of phononic crystals is the
band gap generated by the mechanism of Bragg scattering due to
the periodic impedance mismatch. A band gap is a frequency range
within which the propagation of elastic or acoustic wave is com-
pletely obstructed. Hence, phononic crystals have been widely in-
vestigated for vibration suppression applications. However, band
gaps generated by Bragg scattering are the result of the interaction
among incident, reflected, and transmitted waves when the wave-
length is comparable with the lattice constant. Therefore the
dependence on the size of the lattice constant limits their practical
applications in the low-frequency domain. In the last decade, elastic
metamaterials (EMMs) with unique effective dynamic properties
that cannot be realized in natural materials have received great

interest (Banerjee et al. 2017; Huang et al. 2009; Yao et al.
2008). These materials can also generate band gaps, but based
on local resonance mechanisms. For this reason, elastic metamate-
rials are also termed local resonant (LR) metamaterials. With peri-
odically embedded local resonators in metamaterials, the band gap
occurs when the external excitation frequency is near the local res-
onant frequency and the local resonators undergo out-of-phase mo-
tions. The dominant phenomenon in the formation of band gaps is
local resonance, and thus it is irrelevant to the lattice constant.
Therefore, elastic metamaterials seem more suited to be designed
for low-frequency vibration suppression. To distinguish between
the band gaps generated by Bragg scattering mechanism and the
local resonance mechanism, this paper uses the terms Bragg gap
and local resonant gap.

Beams are widely used structures in engineering designs. By
integration with phononic crystals or local resonant metamaterials,
the concepts of phononic beams and metamaterial beams have been
proposed and studied. Based on the Euler–Bernoulli beam theory in
conjunction with the transfer matrix method (TMM), Liu et al.
(2007) proposed a method for calculating band structures of meta-
material beams. By replacing the Euler–Bernoulli beam theory with
the Timoshenko beam theory and following the same procedure, Yu
et al. (2006) proposed a similar method for calculating band struc-
tures of metamaterial beams. Pai (2010) derived the dispersion re-
lation of a metamaterial beam by adopting another method based on
the combination of the beam theory and Bloch’s theorem. Under
the assumption of an infinite number of resonators, Sugino et al.
(2017c) proposed a novel method for estimating bands gaps of
metamaterial beams based on modal analysis. In addition to meth-
odology studies for band structure calculation, Zhu et al. (2014)
developed an elastic metamaterial beam with multiple embedded
local resonators for broadband vibration suppression. Multiple
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local resonant gaps existed in their proposed metamaterial beam, as
demonstrated via experimental validation. Zhang et al. (2013) de-
signed a metamaterial beam attached with spiral resonators. They
performed both numerical and experimental investigations. Chen
et al. (2011) presented a piezoelectric phononic beam with active
band-gap controllability. The host beam was periodically covered
by piezoelectric patches that were shunted with negative capaci-
tances. Through tuning the value of the negative capacitance,
the effective Young’s modulus of the piezoelectric-covered sections
was varied, thus resulting in periodic impedance mismatch,
whereby the band gap was controlled. All the preceding studies
of band gaps of phononic or metamaterial beams were based on
calculating the band structures of infinitely long models by using
the transfer matrix method or the finite-element method (e.g., com-
mercial finite-element software COMSOL). Recently, based on the
finitely long model, Hu et al. (2017b) analytically studied a piezo-
electric embedded metamaterial beam for simultaneous vibration
suppression and energy harvesting. They provided finite-element
results from ANSYS to validate their method. Similarly, based
on the finitely long model, Sugino et al. (2017b) investigated a hy-
brid metamaterial beam with both Bragg and LR gaps. Their model
was similar to that presented by Chen et al. (2011). On that basis,
periodic resonators were added onto the phononic beam to create an
additional LR gap. They verified their method by comparing the
results with those from the plane wave expansion method.

In recent years, researchers have explored the potential of meta-
materials for energy harvesting (Carrara et al. 2013; Chen et al.
2014; Hu et al. 2017a; Mikoshiba et al. 2013). For conventional
piezoelectric energy harvesters (PEHs), various modeling methods
have been proposed. Erturk and Inman (2008) developed an
analytical distributed parameter model for unimorph/bimorph pie-
zoelectric energy harvesters. Junior et al. (2009) derived a finite-
element formulation for modeling two-dimensional plate-type
piezoelectric energy harvesters. Yang and Tang (2009) proposed
an equivalent circuit method for modeling piezoelectric energy har-
vesters. Because most effective piezoelectric energy harvesters are
designed as the beam type (Erturk and Inman 2008; Shu and Lien
2006; Tang and Yang 2012; Xu and Tang 2017), the combination of
metamaterials and energy harvesters also often yields beam struc-
tural designs. Shen et al. (2015) used a metamaterial beam model
similar to that proposed by Zhang et al. (2013) for energy harvest-
ing. They reported that the energy transformation could be achieved
at a dozen resonant frequencies within a low frequency range. Chen
et al. (2013) studied a piezoelectric phononic beam with periodi-
cally placed lumped masses. Their study focused on using this
structure for vibration energy harvesting. The piezoelectric meta-
material beam proposed by Hu et al. (2017b) possessed not only
vibration suppression ability but also energy harvesting function-
ality. They evaluated the energy harvesting performance by using
an analytical method and verified it by using finite-element analysis
with ANSYS. Based on a similar idea, Sugino et al. (2017a) also
investigated a multifunctional metamaterial beam with piezoelec-
tric elements. They found that the introduction of the piezoelectric

elements could convert vibration-induced energy into electrical en-
ergy but it did not significantly affect the vibration suppression per-
formance within the band gap. Research in this area is still in an
emerging stage.

This paper develops a framework for modeling piezoelectric
metamaterial beams for the purpose of providing a powerful
analysis method for estimating their energy harvesting and vibra-
tion suppression performance. Existing methods for band structure
calculation in the literature cannot consider the piezoelectric effect.
Within the proposed framework, band structure studies of infinitely
long phononic/metamaterial beams with piezoelectric transducers
under short-circuit and open-circuit conditions can be conducted,
as well as transmittance and energy harvesting performance studies
of finitely long phononic/metamaterial beams. The rest of this pa-
per is organized as follows. First, a one-dimensional (1D) two-node
piezoelectric composite finite element is introduced and formulated
by the generalized Hamilton’s principle. Subsequently, based on
the developed piezoelectric composite finite-element model, a
method for modeling and analyzing infinitely long metamaterial
beams with piezoelectric coverage is proposed. Two case studies
are presented. The first case study investigates a pure metamaterial
beam and evaluates and verifies the band structure using the
proposed method by the TMMmethod. The second case study peri-
odically bonds the metamaterial beam with piezoelectric transduc-
ers. Because of the impedance mismatch between the subsections
with and without piezoelectric coverage, a Bragg gap forms in the
beam, in addition to the LR gap. Hereinafter, this is referred to
as the phononic metamaterial beam. The band structures of the
phononic metamaterial beam bonded with periodic piezoelectric
transducers under short-circuit and open-circuit conditions are re-
spectively calculated. Finally, based on the derived piezoelectric
composite finite element, corresponding finitely long models of
the aforementioned two cases are established. Regarding the pre-
diction of band gaps, the obtained transmittances show good agree-
ment with the predictions from band structures. In addition, the
obtained transmittances and the open-circuit voltage responses
of the bonded piezoelectric transducers are also verified against
the finite-element solutions by ANSYS.

Formulation of Piezoelectric Composite Finite
Element

This section formulates a one-dimensional two-node piezoelectric
composite finite element for beam-type PEHs (Fig. 1). This
element formulation has two degrees of freedom (DOFs) at each
node, namely, translation (u1 and u3) and rotation (u2 and u4).
An additional degree of freedom is the voltage (v). Fig. 1 details
the geometry of the composite finite element, wherein ha and hb are
the positions of the bottom and top of the substrate layer from the
neutral axis, respectively, hc is the position of the top of the piezo-
electric layer from the neutral axis, hs is the thickness of the

Fig. 1. 1D two-node piezoelectric composite finite element with four mechanical DOFs and one electric DOF.
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substrate layer, hp is the thickness of the piezoelectric layer, and le
is the length of the composite element.

The nodal displacement vector of the element consists of four
components ue ¼ ½ u1ðtÞ u2ðtÞ u3ðtÞ u4ðtÞ �T , and thus cubic
interpolation functions are used to represent the vertical displace-
ment in the element. The vertical displacement in the element can
be interpolated by four nodal displacements

uðξ; tÞ ¼ ΦTue ¼ ½ϕ1ðξÞ ϕ2ðξÞ ϕ3ðξÞ ϕ4ðξÞ �Tue ð1Þ

where the shape functions are

ϕ1ðξÞ ¼ 1 − 3
ξ2

l2e
þ 2

ξ3

l3e

ϕ2ðξÞ ¼ ξ − 2
ξ2

le
þ ξ3

l2e

ϕ3ðξÞ ¼ 3
ξ2

l2e
− 2

ξ3

l3e

ϕ4ðξÞ ¼ − ξ2

le
þ ξ3

l2e

Applying the generalized Hamilton’s principle (Junior et al.
2009) for the piezoelectric composite finite element gives

Z
t2

t1

½δðTe − Ue þ VeÞ þ δW�dt ¼ 0 ð2Þ

where Te = total kinetic energy in the element; Ue = total mechani-
cal potential energy in the element; Ve = total electric potential
energy in the element; and W = total work done by the external
mechanical and electrical forces in the element. These can be re-
spectively written as

Te ¼
1

2

Z
le

0

m

�∂u
∂t

�
2

dξ

Ue ¼
1

2

Z
Vs

Ss1T
s
1dVs þ

1

2

Z
Vp

Sp1T
p
1dVp

Ve ¼
1

2

Z
Vp

E3D3dξ

W ¼
Z

le

0

f · udξ þ
Z

le

0

φ · Qdξ ð3Þ

where m = effective mass per unit length of the composite beam;
S = strain; T = stress; the superscripts s and p denote piezoelectric
and substrate layers, respectively; E = electric field in the
y-direction; D = electric displacement; the subscripts 1 and 3 de-
note the x- and y-directions, respectively; f = nonconservative ex-
ternal mechanical force; φ = electric potential; and Q = electric
charge. By using the linear-electroelastic constitutive relation for
the piezoelectric material, the following relations can be written:

�
T
D

�
¼

�
Yp −e31
e31 εS33

��
S
E3

�
ð4Þ

where Yp = Young’s modulus of the piezoelectric material; e31 =
piezoelectric constant; and εS33 = permittivity at constant stress. The
expressions of the total mechanical and electric potential energies
can be respectively expanded as follows:

Ue ¼
1

2

Z
le

0

YIuT
e

�∂2Φ
∂ξ2

��∂2Φ
∂ξ2

�
T

uedξ

− 1

2

Z
le

0

ϑ

�∂2Φ
∂ξ2

�
vuedξ

Ve ¼
1

2

Z
le

0

ϑ

�∂2Φ
∂ξ2

�
vuedξ þ

1

2
Cpv2 ð5Þ

where YI ¼ bf½Ysðh3b − h3aÞ þ Ypðh3c − h3bÞ�=3g = effective bending
stiffness of the composite beam; ϑ ¼ ½ðe31bÞ=ð2hpÞ�ðh2c − h2bÞ =
coupling term; and v = voltage output across the piezoelectric trans-
ducer in the element and Cp ¼ ðεS33bleÞhp = its clamped capaci-
tance, in which b = width of the composite beam. Substituting
Te, Ue, Ve and W into Eq. (2) yields

Z
t2

t1

�
−
Z

le

0

müT
eΦΦTδuedξ −

Z
le

0

YIuT
e

�∂2Φ
∂ξ2

��∂2Φ
∂ξ2

�
T

δuedξ

þ
Z

le

0

ϑ

�∂2Φ
∂ξ2

�
vδuedξ þ

Z
le

0

ϑ

�∂2ΦT

∂ξ2
�
ueδvdξ þ Cpvδv

þ
Z

le

0

fΦT · δuedξ þ
Z

le

0

δφ · Qdξ

�
dt ¼ 0 ð6Þ

The element mass matrix Me, stiffness matrix Ke, electro-
mechanical coupling vector θe and mechanical nodal force vector
Fe can be expressed as follows:

Me ¼
Z

le

0

mΦΦTdξ ¼ mle
420

2
66664

156 22le 54 −13le
22le 4l2e 13le −3l2e
54 13le 156 −22le

−13le −3l2e −22le 4l2e

3
77775 ð7Þ

Ke ¼
Z

le

0

YI

�
d2Φ
∂ξ2

��
d2Φ
∂ξ2

�
T

dξ

¼ YI
l3e

2
66664

12 6le −12 6le

6le 4l2e −6le 2l2e

−12 −6le 12 −6le
6le 2l2e −6le 4l2e

3
77775 ð8Þ

θe ¼ ϑ
Z

le

0

�
d2Φ
dξ2

�
dξ ¼ ϑ

2
66664

0

−1
0

1

3
77775 ð9Þ

Fe ¼
Z

le

0

fðξ; tÞΦdξ ð10Þ

If the mechanical force is uniformly distributed, then

Fe ¼
Z

le

0

fðtÞΦdξ ¼ fðtÞle
2

2
666664

1

le
6

1

− le
6

3
777775 ð11Þ

By assembling the element matrices, the global equations of
motion are obtained
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Müþ CüþKu −Θv ¼ F

Cpv þQþΘTu ¼ 0 ð12Þ
In the most general case, each piezoelectric element has its own

independent electrode pair; v is a ne × 1 vector and Θ is a ð2ne þ
2Þ × ne matrix, where ne is the number of elements to be used for
meshing the beam. In practical applications, the voltage degrees of
freedom on the top and bottom surfaces of the beam are coupled by
conductive electrode layers to provide uniform electric potentials.
Therefore, all piezoelectric composite finite elements should pro-
vide the same voltage output and all the elements in vector v should
be identical

v ¼ ½ v1 v2 : : : vne �T ¼ ½ 1 1 : : : 1 �Tvp ð13Þ
The voltage output vp is a scalar which represents the uniform

electric potential. By redefining the electromechanical coupling
vector ~Θ ¼ Θ½ 1 1 : : : 1 �T [ ~Θ becomes a ð2ne þ 2Þ × 1 vec-
tor], the governing equations are rewritten as

Müþ CüþKu − ~Θvp ¼ F

neCpv̇p þ vp
R

þ ~ΘT u̇ ¼ 0 ð14Þ

Infinitely Long Metamaterial Beam

This section analyzes the band structures of the metamaterial beam
and the phononic metamaterial beam using the proposed method
based on the derived 1D two-node piezoelectric composite finite
element.

Band Structure of Metamaterial Beam

Fig. 2 shows the infinitely long model of a metamaterial beam. Uni-
form local resonators are periodically attached onto the host plain
beam at a constant separation distance l. Each resonator consists of
a mass of m1 and a spring with a linear stiffness of k1. By using the
conventional 1D two-node beam element (omitting the electrical
DOF in the developed piezoelectric composite finite element), this
infinitely long model can be discretized [Fig. 3(a)]. Different
shaded areas denote different cells. Each cell is assumed to be
meshed with (n − 1) elements. Therefore, each beam section con-
sists of n nodes and each cell consists of nþ 1 nodes, of which

the additional node represents the attached local resonator. It is as-
sumed that the different shaded areas in Fig. 3 denote the (j − 1)th,
jth, and (jþ 1)th cells, respectively. By adopting Bloch’s theorem,
the transverse displacement amplitude vectors for nodes in the three
shaded areas can be written as ½A1 A2 : : : An C �Te−iql,
½A1 A2 : : : An C �T and ½A1 A2 : : : An C �Teiql, re-
spectively, where A1;A2; : : : ;An denote the transverse displace-
ment amplitudes of n nodes in the beam section in the unit cell,
and C denotes the displacement amplitude of the local resonator.
The global mass and stiffness matrices of this infinitely long system
can be constructed. For example, the global mass matrix after con-
struction is in the form shown in Fig. 3(b), in which a small square
represents a 2 × 2 submatrix and a large square represents a 4 × 4

submatrix. All other elements outside the small/large squares are
zeros. The global matrices are periodically repeating. The follow-
ing procedure is proposed to obtain the dispersion relation. First,
the repeating pattern from the whole matrices considering only
three neighboring cells is extracted. The repeating mass and stiff-
ness matrices are of size ð6nþ 3Þ × ð6nþ 3Þ. Each row represents
an equation [Fig. 3(b)]. The lines denote either nodal translation
DOF–related equations or nodal rotation DOF–related equations,
and the oval denotes the resonator-related equation. Because
there are only 2nþ 1 unique independent DOFs of nþ 1 nodes,
i.e., others are periodically repeated, there are only 2nþ 1 unique
independent equations. To extract the 2nþ 1 featured fundamental
equations, extract the first n nodal translation DOF–related equa-
tions from top to bottom, the last n nodal rotation DOF–related
equations from bottom to top [Fig. 3(a)], and the intermediate
resonator-related equation. By writing the 2nþ 1 equations in
matrix form, the coefficient matrix should be of the size
ð2nþ 1Þ × ð2nþ 1Þ. Then, by equating the determinant of the
ð2nþ 1Þ × ð2nþ 1Þ matrix to zero to verify the existence of non-
trivial solutions, the dispersion relation of the system can be
derived.

Although each cell theoretically can be meshed with any pos-
itive integer number of elements, in practice, upon the achievement
of convergence, the optimum number of elements should be used to
balance accuracy and computational cost. Taking the simplest case
as an example, i.e., the case in which each cell is meshed with a
single element, the global mass and stiffness matrices of this system
can be constructed as Eqs. (15) and (16), respectively

2
6666666666666666666666666666664

: : :
156mle
420

þ 156mle
420

− 22ml2e
420

þ 22ml2e
420

0
54mle
420

− 13ml2e
420

− 22ml2e
420

þ 22ml2e
420

4ml3e
420

þ 4ml3e
420

0
13ml2e
420

− 3ml3e
420

0 0 m1 0 0

54mle
420

13ml2e
420

0
156mle
420

þ 156mle
420

− 22ml2e
420

þ 22ml2e
420

0
54mle
420

− 13ml2e
420

− 13ml2e
420

− 3ml3e
420

0 − 22ml2e
420

þ 22ml2e
420

4ml3e
420

þ 4ml3e
420

0
13ml2e
420

− 3ml3e
420

0 0 m1 0 0

54mle
420

13ml2e
420

0
156mle
420

− 22ml2e
420

0

− 13ml2e
420

− 3ml3e
420

0 − 22ml2e
420

4ml3e
420

0

0 0 m1

: : :

3
7777777777777777777777777777775
ð15Þ
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Fig. 3. (a) Discretized metamaterial beam; and (b) general form of global mass matrix of discretized metamaterial beam.

Fig. 2. Infinitely long model of metamaterial beam.
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2
66666666666666666666666666666664

: : :

12
YI
l3e

þ k1 þ 12
YI
l3e

−6YI
l2e

þ 6
YI
l2e

−k1 −12YI
l3e

6
YI
l2e

−6YI
l2e

þ 6
YI
l2e

4
YI
le

þ 4
YI
le

0 −6YI
l2e

2
YI
le

−k1 0 k1 0 0

−12YI
l3e

−6YI
l2e

0 12
YI
l3e

þ k1 þ 12
YI
l3e

−6YI
l2e

þ 6
YI
l2e

−k1 −12YI
l3e

6
YI
l2e

6
YI
l2e

2
YI
le

0 −6YI
l2e

þ 6
YI
l2e

4
YI
le

þ 4
YI
le

0 −6YI
l2e

2
YI
le

−k1 0 k1 0 0

−12YI
l3e

−6YI
l2e

0 12
YI
l3e

þ k1 −6YI
l2e

−k1
6
YI
l2e

2
YI
le

0 −6YI
l2e

4
YI
le

0

−k1 0 k1
: : :

3
77777777777777777777777777777775

ð16Þ

The system is assumed to be infinitely long. Thus, the mass and stiffness matrices are correspondingly in a periodic repeating pattern.
Based on Bloch’s theorem, the nodal displacements are assumed to be in the following forms:

wjðtÞ ¼ Aeiðqx−ωtÞ

θjðtÞ ¼ Beiðqx−ωtÞ

ujðtÞ ¼ Ceiðqx−ωtÞ ð17Þ
where i = imaginary unit; and q = wave number. The repeating patterns of the mass and stiffness matrices are

M
⌢

¼

2
666664

54mle
420

13ml2e
420

0
156mle
420

þ 156mle
420

− 22ml2e
420

þ 22ml2e
420

0
54mle
420

− 13ml2e
420

0

− 13ml2e
420

− 3ml3e
420

0 − 22ml2e
420

þ 22ml2e
420

4ml3e
420

þ 4ml3e
420

0
13ml2e
420

− 3ml3e
420

0

0 0 0 0 0 m1 0 0 0

3
777775 ð18Þ

K
⌢

¼

2
666664

−12YI
l3e

−6YI
l2e

0 12
YI
l3e

þ k1 þ 12
YI
l3e

−6YI
l2e

þ 6
YI
l2e

−k1 −12YI
l3e

6
YI
l2e

0

6
YI
l2e

2
YI
le

0 −6YI
l2e

þ 6
YI
l2e

4
YI
le

þ 4
YI
le

0 −6YI
l2e

2
YI
le

0

0 0 0 −k1 0 k1 0 0 0

3
777775 ð19Þ

The governing equation for the repeating pattern of the system is written as

M
⌢

üþK
⌢
u ¼ 0 ð20Þ

Substituting Eqs. (17) into (20) yields8>>>>>><
>>>>>>:
−ω2

2
6666664

54mle
420

e−iql þ
�
156mle
420

þ 156mle
420

�
þ 54mle

420
eiql

13ml2e
420

e−iql þ
�
− 22ml2e

420
þ 22ml2e

420

�
− 13ml2e

420
eiql 0

− 13ml2e
420

e−iql þ
�
− 22ml2e

420
þ 22ml2e

420

�
þ 13ml2e

420
eiql − 3ml3e

420
e−iql þ

�
4ml3e
420

þ 4ml3e
420

�
− 3ml3e

420
eiql 0

0 0 m1

3
7777775

þ

2
6666664

−12YI
l3e

e−iql þ
�
12

YI
l3e

þ k1 þ 12
YI
l3e

�
− 12

YI
l3e

eiql −6YI
l2e

e−iql þ
�
−6YI

l2e
þ 6

YI
l2e

�
þ 6

YI
l2e

eiql −k1

6
YI
l2e

e−iql þ
�
−6YI

l2e
þ 6

YI
l2e

�
− 6

YI
l2e

eiql 2
YI
le

e−iql þ
�
4
YI
le

þ 4
YI
le

�
þ 2

YI
le

eiql 0

−k1 0 k1

3
7777775

9>>>>>>=
>>>>>>;

·

2
664
A

B

C

3
775 ¼ 0 ð21Þ

The repeating patterns of the mass and stiffness matrices are of size 3 × 6. However, after substituting them into Eq. (20) and rearranging,
because of the assumption of periodicity and the implementation of Bloch’s theorem [Eq. (17)], they are degraded into 3 × 3 matrices
[Eq. (21)]. In order to guarantee the existence of a nontrivial solution of Eq. (21), the determinant of the coefficient matrix of Eq. (21)
has to be zero, which leads to the following dispersion equation:
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�������������

24
YI
l3e

ð1 − cos qlÞ þ k1 − ω2

�
54mle
210

cos qlþ 156mle
210

�
i

�
12

YI
l2e

sin qlþ ω2
13ml2e
210

sin ql

�
−k1

i

�
−12YI

l2e
sin ql − ω2

13ml2e
210

sin ql

�
ð2þ cos qlÞ

�
4
YI
le

�
− ω2

�
− 3ml3e

210
cos qlþ 4ml3e

210

�
0

−k1 0 k1 − ω2m1

�������������
¼ 0 ð22Þ

Fig. 4(a) shows the band structure of the system being studied.
Table 1 lists the geometry and material properties of the host beam
and the resonator parameters. Unless explicitly stated otherwise,
the following sections use the same parameters for the host beam
and resonators in all the models. The result calculated by using the
transfer matrix method is also provided for comparison. In the low-
frequency range, the proposed method well predicts the existence
and the location of the band gap. However, for the coarse mesh
case, i.e., the case in which each section is meshed with a single
element, as the frequency increases, the result from the proposed
method deviates significantly from that of the TMM method due to
the lack of sufficient mesh resolution. Increasing the number of
elements for each cell produces results from the proposed method
that converge to those from the TMMmethod [Fig. 4(b)]. By mesh-
ing each cell with four elements, the band gap predicted by the
proposed method is 97.71–143.28 Hz, which is sufficiently accu-
rate compared with the result from TMM (97.71–143.30 Hz). In
addition, for the TMM method, the band structure should be

obtained by sweeping over ω and solving for q. In the proposed
method, the procedure is the reverse: the band structure is obtained
by sweeping q and solving for ω. The TMM method involves beam
equations that consist of trigonometric functions and hyperbolic
functions. The transfer matrix is thus often relatively complex,
and the derived dispersion equation is relatively difficult to solve.
However, in the proposed method, the obtained dispersion equation
[Eq. (22)] is in a much simpler form, leading to higher computa-
tional efficiency.

Band Structure of Phononic Metamaterial Beam

This section investigates the infinitely long model of a piezoelectric
metamaterial beam (Fig. 5). The piezoelectric transducers are peri-
odically bonded onto the bottom surface of the host beam. The
impedance mismatch between the subsections with and without
the piezoelectric coverage produces Bragg scattering, which forms
the Bragg scattering–type band gap in this beam. Because this

Table 1. Geometry and material properties of host beam and resonators

Parameter Value

Host beam mass density 1,180 kg=m3

Host beam Young’s modulus 4.35 GPa
Host beam width 0.02 m
Host beam thickness 0.005 m
Local resonator mass 0.01 kg
Local resonator spring stiffness 3,947.8 N=m
Lattice constant 0.08 m Fig. 5. Infinitely long model of phononic metamaterial beam.

Fig. 4. (a) Band structures of metamaterial beam from proposed method and TMM method; and (b) close-up view to demonstrate convergence.
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piezoelectric metamaterial beam possesses both Bragg gap and LR gap, therefore, it is referred to as a phononic metamaterial beam. The
governing equations of the phononic metamaterial beam are

MüþKu − ~Θvp ¼ 0

neCpv̇p þ vp
R

þ ~ΘT u̇ ¼ 0 ð23Þ

Short-Circuit Condition

This subsection assumes the piezoelectric transducers to be under short-circuit condition. Therefore all the elements in the voltage vector vp
are set to zero. This section demonstrates the calculation procedure for the simplest case, i.e., each subsection is meshed with a single element
and each cell is meshed with two elements. First, the global mass and stiffness matrices of this system can be constructed as Eqs. (24)
and (25), respectively2
6666666666666666664

: : :
54mala
420

13mal2a
420

0
156mala
420

þ156mblb
420

−22mal2a
420

þ22mbl2b
420

54mblb
420

−13mbl2b
420

−13mal2a
420

−3mal3a
420

0 −22mal2a
420

þ22mbl2b
420

4mal3a
420

þ4mbl3b
420

13mbl2b
420

−3mbl3b
420

54mblb
420

13mbl2b
420

156mblb
420

þ156mala
420

−22mbl2b
420

þ22mal2a
420

0
54mal2a
420

−13mal2a
420

−13mbl2b
420

−3mbl3b
420

−22mbl2b
420

þ22mal2a
420

4mbl3b
420

þ4mal3a
420

0
13mal2a
420

−3mal3a
420

m1

: : :

3
7777777777777777775

ð24Þ
2
666666666666666666664

: : :

−12YaIa
l3a

−6YaIa
l2a

0
12YaIa

l3a
þ12YbIb

l3b
−6YaIa

l2a
þ6YbIb

l2b
−12YbIb

l3b

6YbIb
l2b

6YaIa
l2a

2YaIa
la

0 −6YaIa
l2a

þ6YbIb
l2b

4YaIa
la

þ4YbIb
lb

−6YbIb
l2b

2YbIb
lb

−12YbIb
l3b

−6YbIb
l2b

12YbIb
l3b

þk1þ
12YaIa

l3a
−6YbIb

l2b
þ6YaIa

l2a
−k1 −12YaIa

l3a

6YaIa
l2a

6YbIb
l2b

2YbIb
lb

−6YbIb
l2b

þ6YaIa
l2a

4YbIb
lb

þ4YaIa
la

0 −6YaIa
l2a

2YaIa
la

−k1 k1
: : :

3
777777777777777777775

ð25Þ
in which the subscripts a and b denote the subsections with and without piezoelectric coverage, respectively; la and lb = lengths of the
elements within the subsections with and without piezoelectric coverage, respectively; and l = lattice constant. By following the same pro-
cedure presented in the previous section, the repeating patterns of the mass and stiffness matrices are extracted and the dispersion relation of
this phononic metamaterial beam is obtained as

j − ω2MþKj ¼ 0 ð26Þ
in which

M¼

2
66666666666666664

�
54mala
420

e−iql þ 54mblb
420

� �
13mal2a
420

e−iql − 13mbl2b
420

� �
156mala
420

þ 156mblb
420

�
e−iql

�
−22mal2a

420
þ 22mbl2b

420

�
e−iql 0

�
156mblb
420

þ 156mala
420

� �
−22mbl2b

420
þ 22mal2a

420

� �
54mblb
420

e−iql þ 54mal2a
420

� �
13mbl2b
420

e−iql − 13mal2a
420

�
0

�
−13mal2a

420
þ 13mbl2b

420
eiql

� �
−3mal3a

420
− 3mbl3b

420
eiql

� �
−22mal2a

420
þ 22mbl2b

420

� �
4mal3a
420

þ 4mbl3b
420

�
0

�
−22mbl2b

420
þ 22mal2a

420

�
eiql

�
4mbl3b
420

þ 4mal3a
420

�
eiql

�
−13mbl2b

420
þ 13mal2a

420
eiql

� �
−3mbl3b

420
− 3mal3a

420
eiql

�
0

0 0 0 0 m1

3
77777777777777775

ð27Þ
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K ¼

2
66666666666666664

�
− 12YaIa

l3a
e−iql − 12YbIb

l3b

� �
− 6YaIa

l2a
e−iql þ 6YbIb

l2b

� �
12YaIa

l3a
þ 12YbIb

l3b

�
e−iql

�
− 6YaIa

l2a
þ 6YbIb

l2b

�
e−iql 0

�
12YbIb

l3b
þ k1 þ

12YaIa
l3a

� �
− 6YbIb

l2b
þ 6YaIa

l2a

� �
− 12YbIb

l3b
e−iql − 12YaIa

l3a

� �
− 6YbIb

l2b
e−iql þ 6YaIa

l2a

�
−k1�

6YaIa
l2a

− 6YbIb
l2b

eiql
� �

2YaIa
la

þ 2YbIb
lb

eiql
� �

− 6YaIa
l2a

þ 6YbIb
l2b

� �
4YaIa
la

þ 4YbIb
lb

�
0

�
− 6YbIb

l2b
þ 6YaIa

l2a

�
eiql

�
4YbIb
lb

þ 4YaIa
la

�
eiql

�
6YbIb
l2b

− 6YaIa
l2a

eiql
� �

2YbIb
lb

þ 2YaIa
la

eiql
�

0

−k1 0 0 0 k1

3
77777777777777775
ð28Þ

Fig. 6 shows the band structure of the phononic metamaterial
beam. Table 2 lists the geometric and material parameters of the
piezoelectric transducers (PZT-5H). To maintain consistency, the
same type of piezoelectric transducer was used in all the models
under investigation throughout this paper.

The result from the proposed method is in good agreement
with that from the TMMmethod. The LR gap predicted by the pro-
posed method and the TMM method are almost identical, 98.31–
139.12 Hz and 98.31–139.13 Hz, respectively. Over the frequency
range 0–1,000 Hz, compared with the metamaterial beam without
any piezoelectric coverage, the phononic metamaterial beam can
provide an additional Bragg band gap which is generated by the
periodic impedance mismatch between the subsections with and
without piezoelectric coverage. The Bragg gap predicted by the
proposed method and the TMM method are very close, 707.84–
834.80 Hz and 707.67–834.51 Hz, respectively.

Open-Circuit Condition

This case assumed the piezoelectric transducers to be under open-
circuit condition. Eliminating the voltage vector vp in Eq. (23)
obtains

Müþ
�
Kþ

~Θ ~ΘT

neCp

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Keff

u ¼ 0 ð29Þ

where the electromechanical coupling induces an increase in the
stiffness of the system. For the case of each subsection meshed with
a single element, ~Θ ~ΘT can be calculated as follows:

~Θ ~ΘT ¼

2
66666664

0 0 0 0 0

0 0 0 0 0

0 −θ2 0 θ2 0

0 θ2eiql 0 −θ2eiql 0

0 0 0 0 0

3
77777775

ð30Þ

By integrating the electromechanical coupling–related matrix
with the mechanical stiffness matrix and then applying the same
procedure, the dispersion relation of the phononic metamaterial
beam under open-circuit condition can be derived. For the previ-
ously investigated phononic metamaterial beam, Fig. 7 shows its
band structure under open-circuit condition.

The LR gap is almost unaffected irrespective of whether the pie-
zoelectric transducers are under short-circuit condition (98.31–
139.12 Hz) or open-circuit condition (98.33–139.12 Hz) [Fig. 7(a)].

This is expected because the local resonant gap only depends on the
properties of local resonators, and the shift between short-circuit
and open-circuit conditions of the piezoelectric transducers does
not influence the local resonators. The width of the Bragg gap in-
creases when piezoelectric transducers are under open-circuit con-
dition (708.03–848.70 Hz) compared with that under short-circuit
condition (707.84–834.80 Hz). This is because when piezoelectric
transducers are under open-circuit condition, the piezoelectric
effect stiffens the beam and resists the beam deformation. Conse-
quently, the impedance mismatch between the subsections with and
without piezoelectric coverage becomes more significant, leading
to a larger Bragg gap (Lu et al. 2009). The existing TMM method

Fig. 6. Comparison of band structures of phononic metamaterial beam
under short-circuit condition from proposed method and TMMmethod.

Table 2. Geometric and material properties of PZT-5H

Parameter Value

PZT-5H mass density 7,500 kg=m3

sE11 1.65 × 10−11 m3=N
d31 −2.74 × 10−10 m=V
e31 −16.6 C=m2

εT33 3.01 × 10−8 F=m
PZT-5H width 0.02 m
PZT-5H length 0.04 m
PZT-5H thickness 0.0002 m

© ASCE 04018088-9 J. Aerosp. Eng.

 J. Aerosp. Eng., 2018, 31(6): 04018088 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
on

g 
K

on
g 

U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
an

d 
T

ec
hn

ol
og

y 
(G

ua
ng

zh
ou

) 
on

 0
8/

02
/2

4.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



cannot consider the piezoelectric effect. Hence, this paper does not
provide the TMM-calculated band structure result for open-circuit
condition for comparison. The following section verifies the
band gaps from the band structure for the infinitely long model
of the phononic metamaterial beam under open-circuit condition
by comparing it with the transmittance of the finitely long counter-
part model.

Finitely Long Metamaterial Beam

This section evaluates two more practical finitely long models of a
metamaterial beam with certain energy dissipation mechanisms.

Transmittance of Metamaterial Beam

Fig. 8 shows the finitely long model of the metamaterial beam.
Bonding a piezoelectric transducer at the clamped end of the beam
fortuitously imparts the system with energy harvesting functional-
ity in addition to the intrinsic vibration suppression.

With the parameters listed in Tables 1 and 2 and assuming a host
beam length of 0.12 m (thus incorporating three resonators attached
onto the host beam), Fig. 9 shows the transmittances of the meta-
material beam with the piezoelectric transducer under short-circuit
and open-circuit conditions. Classical Rayleigh damping is applied
to the host beam. The mass-proportional damping coefficient
and the stiffness-proportional damping coefficient are assigned
to make both the damping ratios for the first and the second modes

equal to 0.09. The damping ratio of the resonator used in the cal-
culation is also set to be 0.09. The piezoelectric-covered composite
subsection is meshed with four elements. Each of other cells with-
out piezoelectric coverage is also meshed with four elements. The
results from the FE solution obtained from ANSYS are provided
for comparison. For the model developed with ANSYS, the host
beam is modeled with three-dimensional (3D) 20-node structural
solid elements (SOLID186), and the piezoelectric transducers are
modelled with 3D 20-node coupled-field solid elements (SOLID226).
The full 3D model in ANSYS is meshed with 3,094 elements.
Although the mesh of the 3D model in ANSYS is not optimized
to minimize the element number, it can still be concluded that the
proposed model exhibits much higher computational efficiency
from the perspective of the element number.

The vibrations are suppressed within the local resonant gap
range, as anticipated (Fig. 9). As explained previously, the shunting

Fig. 8. Finitely long model of metamaterial beam.

Fig. 9. Transmittances of metamaterial beam with piezoelectric trans-
ducer under short-circuit and open-circuit conditions from proposed
model and FE model using ANSYS.

Fig. 7. (a) Band structures of phononic metamaterial beam with piezoelectric transducers under short-circuit and open-circuit conditions; and
(b) close-up view of Bragg gap.
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status of the piezoelectric transducer does not much affect the local
resonant gap. The transmittance curves representing short-circuit
and open-circuit conditions coincide with each other, and these
curves are essentially indistinguishable. The predicted transmittan-
ces using the derived 1D elements are in good agreement with those

obtained by ANSYS for the frequency range lower than the second
natural frequency. However, the results show a noticeable deviation
when the frequency exceeds the second natural frequency. This
deviation originates from the difference between the derived 1D
elements used in the proposed model and the 3D elements used
in ANSYS. The global mass and stiffness matrices constructed
in the proposed model and in the FE implementation in ANSYS
are intrinsically different. Because the damping ratios for the first
and second modes in both models are only guaranteed to be accu-
rately equal to 0.09, only the results around first two natural
frequencies are in good agreement. For higher modes, their damp-
ing ratios are out of control and possibly quite different in both
models.

Both the damping and the number of resonators influence the
correlation between the band structure of the infinitely long model
and the transmittance of the finitely long model (Hu et al. 2017c).
By removing damping and increasing the number of resonators
(while keeping the same lattice constant), Figs. 10(a and b) show
the transmittances of the beam containing different number of cells
with the piezoelectric transducer under short-circuit and open-
circuit conditions, respectively. With an increase in the number of
cells, the LR gap becomes more prominent, i.e., the valley in the
transmittance becomes deeper, which implies that the vibrations are
more intensively suppressed. Additionally, the range of the LR gap
predicted in the transmittance approaches the range predicted from
the band structure. The shunting condition of the piezoelectric
transducer has essentially no effect on the transmittance.

Voltage Response of Metamaterial Beam

For the same parameters used for the results in Fig. 9 and at a con-
stant base excitation of acc ¼ −1 m=s2, Fig. 11 shows the open-
circuit voltage response of the piezoelectric transducer bonded
at the root of the metamaterial beam. The voltage responses from
the proposed model and the FE solution (ANSYS) are provided for
comparison. Although the proposed model uses only 1D elements
to model the beam, the result still has sufficient accuracy
(error ¼ 7.3%) compared with that obtained from the ANSYS
based FE solution using 3D solid elements. The maximum
open-circuit voltage amplitudes obtained from the proposed model

Fig. 11. Open-circuit voltage responses of metamaterial beam PEH
from proposed model and FE solution from ANSYS.

Fig. 12. Finitely long model of phononic metamaterial beam.

Fig. 10. Transmittances of metamaterial beams containing different number of cells: (a) under short-circuit condition; and (b) under open-circuit
condition.
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based on 1D elements and ANSYS based on 3D solid elements are
31.5 and 29.2 V, respectively.

Transmittance of Phononic Metamaterial Beam

This section investigates the transmittances of the phononic meta-
material beam under short-circuit and open-circuit conditions.
Fig. 12 shows the corresponding finitely long model of the pho-
nonic metamaterial beam in Fig. 5. The left side of the finitely long
model is clamped.

For the same parameters of the host beam, resonators, piezo-
electric transducers, and damping properties as those of the
metamaterial beam in the previous section, Fig. 13 shows the trans-
mittances of the phononic metamaterial beam with piezoelectric
transducers under short-circuit and open-circuit conditions. In each
cell of the proposed model, the subsections with and without piezo-
electric coverage are both meshed with four elements. The full 3D

model developed in ANSYS is meshed with 3,414 elements. Sim-
ilarly, the results from the proposed model match well with those
from the FE model in ANSYS. The shunting condition of the piezo-
electric transducers has virtually no influence on the transmittance
of the phononic metamaterial beam.

The previous section anticipated that an additional Bragg gap
should appear for the phononic metamaterial beam. However,
the predicted Bragg gap is not observed in Fig. 13. As was previ-
ously mentioned, both the existence of damping and number of
resonators influence the transmittance of the finitely long model.
By assuming the damping to be absent and increasing the number
of cells, Figs. 14(a and b) show the transmittances of the beam con-
taining different number of cells with piezoelectric transducers
under short-circuit and open-circuit conditions, respectively. With
an increase in the number of cells, the second valley in the trans-
mittance becomes deeper, leading to a distinct Bragg gap. The
shaded areas denote band gaps predicted from the band structure
of the phononic metamaterial beam in Fig. 7(a). The band gaps
predicted from the transmittances are in good agreement with
those predicted from the band structures. In addition, comparing
Figs. 14(a and b) shows that the shunting condition of the piezo-
electric transducers does not much affect the LR gap, but affects the
Bragg gap, as previously mentioned. Under the open-circuit con-
dition, the piezoelectric effect comes into force. The mechanical
impedances between the subsections with and without piezoelectric
coverage have a larger difference, resulting in a widening of the
Bragg gap.

Voltage Response of Phononic Metamaterial Beam

For the same parameters used for the results in Fig. 13 and at a
constant base excitation of acc ¼ −1 m=s2, Fig. 15 shows the
open-circuit voltage responses of the piezoelectric transducers
boned onto the phononic metamaterial beam. The three piezoelec-
tric transducers bonded from the clamped end to the free end are
denoted successively the first, second, and third transducers. Fig. 15
compares the voltage responses for each of the transducers from the
proposed model and the FE model (using ANSYS). The maximum
open-circuit voltage amplitudes obtained from the proposed model
and the FE solution (from ANSYS) are respectively 33.5 and
31.3 V for the first piezoelectric transducer, 18.2 and 16.7 V for

Fig. 14. Transmittances of phononic metamaterial beams containing different number of cells with piezoelectric transducers: (a) under short-circuit
condition; and (b) under open-circuit condition.

Fig. 13. Transmittances of phononic metamaterial beam with piezo-
electric transducers under short-circuit and open-circuit conditions
and comparison with FE solution from ANSYS.
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the second piezoelectric transducer, and 5.5 and 5.1 V for the third
piezoelectric transducer. Thus, the results from the proposed model
based on the derived 1D piezoelectric composite finite element
have good accuracy.

Conclusions

This paper proposed a framework for modelling phononic/
metamaterial beams bonded with piezoelectric transducers on
the basis of a derived one-dimensional piezoelectric composite fi-
nite element for beam-type PEHs. This framework enables system-
atic investigation of the vibration suppression performance of
phononic/metamaterial beams through evaluation of the band struc-
tures of infinitely long models or the transmittances of finitely long
equivalent models. Moreover, the energy harvesting performance
of phononic/metamaterial beams can be estimated by determining
the open-circuit voltage responses of finitely long models. The
method developed within this framework can incorporate the piezo-
electric effect into consideration for calculating band structures.
For piezoelectric materials with strong electromechanical coupling
coefficients, the piezoelectric effect has a significant influence on
the Bragg gap and thus should not be ignored.

To verify the framework and the method, two case studies were
presented. The first case study investigated a conventional infinitely
long model of a metamaterial beam without piezoelectric coverage.
The band structure obtained from the proposed method was verified
by the TMM method. For the finitely long model, a piezoelectric
transducer was bonded at the clamped end of the metamaterial
beam, and the transmittance and open-circuit voltage response
of the piezoelectric transducer were calculated by using the pro-
posed model. The prediction of the band gaps from the transmit-
tances matched well with that from the band structures.
Subsequently, an equivalent 3D finite element model using the
ANSYS program was developed. The transmittance and open-
circuit voltage response from the proposed model agreed well with
the results from the FE solution from ANSYS, which further veri-
fied the proposed framework.

The second case study investigated a metamaterial beam with
periodic piezoelectric coverage (i.e., a phononic metamaterial
beam). For the infinitely long model, the band structures under
the short-circuit and open-circuit conditions of the piezoelectric

transducers were determined. This demonstrated a benefit over
the existing TMM method, which cannot take the piezoelectric ef-
fect into account. For the finitely long model, the transmittance and
the open-circuit voltage responses of the piezoelectric transducers
were calculated using the proposed model. For both short-circuit
and open-circuit conditions, the prediction of the band gaps from
the transmittances agreed well with that from the band structures.
Similarly, an equivalent 3D finite-element model using ANSYS
was also developed for this case study to verify the results from
the proposed model in relation to the transmittance and the
open-circuit voltage responses of the piezoelectric transducers.
The FE results correlated well with those predicted by the proposed
model.

In summary, the proposed framework can be applied for inves-
tigating and designing multifunctional piezoelectric phononic/
metamaterial beams.
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